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MODE APPROXIMATIONS FOR RIGID-PLASTIC STRUCTURES
SUPPORTED BY AN ELASTIC MEDIUM

G1uLiIaNO AugusTit

Brown University, Providence, Rhode Island

Abstract—A rational procedure for obtaining simple approximations of the displacement fields is developed
for the structures in the title, loaded statically beyond the point at which plastic flow begins. Some examples,
pertaining to beams and plates on Winkler soil {or heavy liquid), illustrate the procedure.

1. NOTATION
B = B(&), F = F({), auxiliary functions [Example (a)]

G =G
b position of hinges (or hinge circle) in approximate displacement fields v*
€, ¢ reaction constants
i half-length of beam (Figs.2 and 4)
M bending moment
M* statically admissible moments
M, {positive) full-yield {or limit) bending moment
M,, My radial and tangential bending moments in plate
P applied force (reference value)
4;, Q; generalized strains and stresses
q¥ strain in approximate solution

¥ statically admissible stresses in approximate solution

] kinematically admissible stresses in approximate solution
R plate radius [Example (c}]
r current radius [Example (c}]
S surface of body Q
U, U displacements
u¥, u* displacements in approximate solution
X position vector
W* strain energy of supporting medium, in approximate solution
r see equation (10)
A AT see equations (9) and (12)
A, value of A* for & = £,
/e characteristic values of # and u* (Examples)
I ratio of negative to positive limit moment of plate (Fig. 7)
¢ load factor
&y threshold factor {(formation of plastic mechanism}
¢, other characteristic value of ¢
Eom maximum value of £ for a given loading program
p ratio A /W*
P valueof pfor & = ¢,
(0 yield function
(¢} rigid—perfectly plastic body (Fig. 1)
) PF 0
> { (1) when ()< 0

{ = when ()=0
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2. INTRODUCTION

A NUMBER of important structures, such as platforms floating on heavy liquid and founda-
tion beams or slabs on comparatively soft soil, are supported by continuously distributed
reactions, whose unit value increases more or less proportionally with the increase of the
corresponding displacements.

If one tries and applies the theory of plastic structures to such instances, it is found that,
under quasi-statically increasing applied forces, a plastic mechanism develops in the
structure at a certain threshold load intensity: thereafter (even if second-order geometry
effects are neglected), the external forces can continue to increase, essentially because
the supporting reactions also increase. Therefore, the threshold load is essentially different
from the collapse or limit load defined in the usual simple plastic theory.

As the applied forces increase beyond the threshold value, in general, the changing
pattern of loading causes the shape of the incremental displacement field to change also:
in other words (in the language appropriate to one- and two-dimensional structures) the
plastic hinges travel during the loading process. Although this phenomenon has been
recognized for some time [1], rather little progress appears to have been made along this
line, probably because of the great mathematical difficulties involved in following the
changing displacement patterns of even the simplest examples, coupled with the physically
unacceptable result of loads that can increase beyond any limit. However, problems of
this type had to be solved for practical purposes: indeed [2] *“the rapid expansion of air-
ports and the increase in the weight of modern aircraft, as well as the growth of highway
traffic, requires the design of more and thicker pavements for heavy wheel loads and great
traffic volumes™ (1962). Different authors have tackled the problem in different ways:
either by developing semi-empirical formulae for the ultimate load fitting the results of
experiments (e.g. [3]), or by calculating the collapse load according to the simple plastic
theory of limit analysis but neplecting the variation of support reaction with displacement
[4, 2], or by assuming that the unit soil reaction has a well-defined yield limit, so that a
collapse situation of the structure-soil complex is eventually reached [5, 6].

On the other hand, traveling hinges have long been known to occur in dynamically
loaded plastic structures (see e.g. [7-9)). In this field of research, theorems have been
established [10-12] which allow, in most cases, to find very simple approximate solutions,
with a measurable degree of overall approximation.

In the present paper, similar theorems are derived for statically-loaded, rigid-plastic
structures embedded in an elastic medium. It is thus possible to develop a very simple
procedure for finding approximate displacement fields, whose degree of approximation
is known or at least bounded: it is felt that in this way not only it is possible to analyze
the overall performance, for example, of a foundation slab on an elastic soil, but also to
introduce more rational criteria for the failure of the soil itself, based on the deformation
over a finite area rather than on the stress values at each point independently of the
neighboring ones.

Some examples illustrate the problem and the suggested procedure.

3. DEFINITION OF THE PROBLEM

Consider a rigid—perfectly plastic body Q subjected to forces £P,, which increase quasi-
statically in proportion to a single parameter £ (Fig. 1). Part S of the surface of Q is embedded
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Fi1G. 1. Diagram of general body in elastic medium.

in an elastic medium, i.e. is subjected to distributed reactions, of componenents — c;u;/unit
surface, where u; are the cartesian components of the displacement of each point of S and
¢; are non-negative reaction coefficients (i = 1,2, 3). It is assumed that the ¢;’s may vary
from point to point but are constant with respect to £, and that the reactions —cu; dS
are able to equilibrate the loads £P,.

The displacement, generalized strain and generalized stress fields in Q will be indicated
by udx, &), g4x, &), Qfx, &) respectively, where x is the position vector. The variation in
the strain field for an increment d¢ of & is related to the (instantaneous) stress field by the
plastic flow rule

P2,
0Q;

4,(x, &) = AP@Q) (1)

Here, as in the following, a superimposed dot indicates differentiation with respect to
&; A is an arbitrary non-negative constant ;

0 when ¢(Q;) <0

1 when ¢(Q;) =0 &

{$(Q))> ={

and ¢(Q;) is the yield function of the material: states of stress such that ¢(Q;) > 0 are
excluded. Again, the function ¢(Q;) is permitted to vary with x but not with £
Under these assumptions, as long as the load factor remains in the interval

0<i<é (3)

the strain field is everywhere nil and the displacement field u; corresponds to a rigid-body
motion. When ¢ reaches the value &, (which will be referred to as the threshold value),
the stress field allows, through equation (1), a compatible set of strain increments: in
other words, a plastic mechanism has formed and the rigid—plastic body begins deforming.
The displacement increments are uniquely related to the strain increments, to within a
rigid-body motion which is determined by equilibrium.

As £ increases further, the stress field changes, due to the change in the displacement
and reaction fields, and in general the strain and displacement-increment fields change
too: in other words, the displacement field varies with ¢ not only in magnitude but also
in shape, just like in impulsive load problems it varies with time. Its determination does
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not offer any conceptual difficulty, but calls for great computational work : therefore, it
may be worth looking for an approximate solution, which is indeed the object of this

paper.

4. CONSTRUCTION OF AN APPROXIMATE DISPLACEMENT FIELD

Consider a displacement field uf(x, &), such that the reactions —c;u¥ dS are in equili-
brium with loads £P,, but otherwise arbitrary : this field will be taken as an approximate
solution for the displacements u(x, &). In practical applications, it will be often convenient
to choose a field u* such that its shape does not vary with time, i.e. a mode approximation

uf(x, &) = v{x)f(&). 4)

However, the arguments in this section are not limited to fields of the type (4); only fields
with moving discontinuities of u} are excluded.

Let ¢¥ be the strain increments determined by uf¥, and Q] the stresses associated with
any non-zero §¥ by the plastic flow rule (1). Assume also that, for any relevant value of ¢,
a stress field Q¥ can be found throughout €, in equilibrium with &P, and — cuf dS, and
not violating the yield condition

#(QF) < 0. (5

The stresses (@; — QF) are in equilibrium with zero external forces and surface reactions
—c¢i(u; — u¥). Applying the principle of virtual work to the above loads and the increment
of (u; — uf) for an infinitesimal variation of ¢,

- [ au—upy. i~ anyds = [ (@, - on.@; - ande. ©)
S Q

Since Q; and ¢; are associated through the flow rule and Q¥ satisfies the yield condition (5),
Drucker’s stability postulate [10, 13] yields

[ @-on.q0>0 ™)
and for analogous reasons
[@-0)aawzo (7
whence, after some algebra
[@-on.w-mew>- | @-on.aae ®)
Let now
A= éLc,{u,- —u¥). (u; — u¥)ds 9)

r :f ©; - Q). 4} d0 (10)
Q
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A is a positive-definite quantity, that can be taken as an overall measure of the difference

between the approximate displacement field uf¥ and the exact field ;; I is also a non-

negative quantity which depends only on the approximate field u¥ and its variation with &.
Introducing (8), (9) and (10), equation (6) becomes

oA <Tr (11)
I

Initially (i.e. for £ = 0) both fields u; and u}* are identically zero; therefore inequality (11)
can be integrated to give an upper bound on A for any value of ¢, in the form

&
A®) < A*(®) = fo rde (12)

A*(¢) is thus an upper bound to a measure of the overall approximation involved in
substituting u¥ to u;: it is given by quantities related to the approximate field u} only,
and therefore can be calculated once u} is known. The only condition for the validity of
this upper bound is that a statically admissible field Q¥ can be determined in conjunction
with u¥ : however, it will be seen in Example (a) that this condition can be relaxed in some
special cases of practical interest.

In order to evaluate the quantitative meaning of A*, it should be compared with some
other analogous quantity, either known a priori or depending on u} only. For instance,
such a quantity is the elastic energy stored in the embedding medium

wr = [ cur ur ds. (13)
2 )

It seems fair to assume that in general the approximate field u¥ is the more reliable, the
smaller is the ratio

A+

= (14)

p

However, since also W* actually depends on uf, this statement must not be taken to be
too restrictive: for instance, if more than one field u¥* can be found, the most reliable is
the one with smallest A*, and not p.

5. EXAMPLES

(a) Beam under two end forces (Fig. 2)

Let 2/ be the length of a rigid—plastic beam, loaded at the ends by two equal downward
forces £P and supported on an elastic soil whose reaction/unit length of beam is equal
to —cu, where u is the displacement of the beam (positive downwards). This beam goes
through three phases of behavior, as the load factor £ increases:

Phase I (0 < & < &,). The beam moves rigidly downwards [Fig. 2(a)], with a constant
displacement u = 5, given by equilibrium

P
n =& (al)
cl
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oA -f!—q
£p ! ¢P

BENDING MOMENTS

@ u=u’ ~cuz=-cu*
(O<€S€|) l ! Aﬂﬂﬂ]ﬂ%

\

u=u}  -cu=-cu

(b) PHASE II 3 7,>0
(€i<€< &) |

i lPREVIOUSLY YIELDED °
u -CU__, ACTIVE HINGE
st 7 " AT
(£>¢,) Mg ™
uy  -cu® *<0
(d) PHASE I s K ﬂﬂm
(APPROXIMATION) ala’™ 72 >0 M "
o] o)
(61 PH - u* -cut
e)PHASE x
(ALTERNATE T 750 gﬂﬂ@mﬂm
kb b~ M M

APPROXIMATION) o Y

FiG. 2. Example (a).

The maximum moment occurs in the mid-span section B, and is equal to

Mg = IZ—EPI ' 2)
15:—'3’112--.—2 (a

(Hogging bending moments are taken as positive in this example.) The threshold value of &
is given by
2M,

P @)

I
MB=M0:€1P‘§, 1.€. él—:
where M, is the (hogging) limit moment of the beam. Choosing the reference value P
such that

1

the threshold load factor is
& =1 (a5)

Phase 1I (£, < & < &;). As soon as ¢ > &, plastic rotations take place in the plastic
hinge B [Fig. 2(b)]. Overall equilibrium gives

1 P

m+ M2 = C;l (ab)

and the yield condition
2 12

Mo = (Pl —cen— —om

g 3 a7)
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Introducing (a4), equations (a6) and (a7) give

2M .
M= "0 - 20)
(a8)

M, .
Hy = “3’5‘6@ 1).

The deformation of the beam remains concentrated in the only plastic hinge in B as long
as B is the maximum moment section, i.e. as long as

7120, or 5<52=;- (a9

Phase I11 (¢ > £,). In this phase, 4 < 0 in the central portion of the beam, that is there-
fore loaded by a downward reaction : B is no more the maximum moment section, and the
plastic hinge splits in two symmetric hinges which move steadily towards the ends of, the
beam as ¢ increases [Fig. 2(c)]. An approximate solution u* is assumed in this phase, such
that the plastic rotation remains concentrated in B [Fig. 2(d)].

The general treatment shows that the bound A™ holds for this approximation as long
as a bending moment diagram M* can be found, in equilibrium with loads £P and reactions
~cu®, and satisfying the yield condition. Note however that the validity of inequality (7)
is the only reason for which M* is required not to violate the yield condition: in this
particular example one can easily argue that the true rate of curvature is always non-
negative, so that

M* < M, (al0)

is a sufficient condition for validity of (7'), and therefore is the only limitation which will
be imposed to the approximate field u*.

Overall equilibrium yields the same equation (a6) of Phase II. The shear force is zero,
1.e. M* is maximum, in sections S at a distance 2a from B, where [Fig. 2(c)]

-1

a ==
*
12

1 (all)

Equating to M, the bending moment in §

2 1 — 2ay I - 1 — 2a)?
Mo = ¢P(l — 2a) — c(n’:‘ + 7—%’5)( 5 Ay _ . z 28,4 32“) . (@l12)
Equations (a4), (a6), (a11) and (al12), after some algebra, give
2M, & 4
* — Ry —
=-S5l
(al3)

. M, _ 4
= 2eelie /(-5
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The diagrams of 1,, 2, #¥, n%, as obtained from equations (al), (a8) and (al3), are plotted

in Fig. 3(a).
40
30
& 20
~N [+]
~l=
ol
10
0
(a) <
10 pHASE IPHASE: PHASE
1wl om .
I |
/
cltd® 4+
Plamz?l
0.30 - 30
0.20 |- 20
(b)
0.10F 10
0 )|
o I 2 3 4 5 ¢

FiG. 3. Example (a): Approximate displacements and measure of approximation.

The bending moment in B is
2 12

l
M¥% = EPl — cn}"i - Cﬂ?g-

Introduction of (a4) and (a13) into (al4) leads easily to
My, — M}

-Mp_ 2 _ 4.
i, ! “6[”/(1 sc)]‘”@'

(al4)

@l15)
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Some successive moment diagrams M*, with the corresponding values of F, are sketched
in Fig. 3(a). Note that when F > 2 (i.e. £ > 4-1 approx.), the M* diagram violates the yield
condition, because M} < — M, : however, inequality (a10) holds.

In the present example, equation (10) becomes

T = (M, — Mg)—’;. (a16)
The second equation (a13) gives
2M, E—1 4M,
= — = . 17
"3 Clz 5”*‘ | 4 Clz G(é) (a )
3¢
Introducing (a15), (a16) and (a17) into (12), one gets
At =0 for 0K<¢<3
{(al8)
2 ps
At = %‘3] FGd¢ for &2 3.
o Jy
Equation (13), with introduction of (a13), becomes
4 2 4M2
W* = j c(n‘{‘ + n% "j) dz = C—!;)B(é) {al19)
0

where

_ & 4\
B(&) = &2 {1 +T§[l +\/(1 — 52” } (a20)

In turn, equation (14) yields

_ Ay €= @21)
p - W* - B = T}

Equations {a19) and (a21) are plotted in Fig. 3(b). It can be noted that they guarantee that

the approximation u* is reasonably good up to loads 4 or 4} times the threshold value
él = 1

However, if the maximum load ¢,P is larger, it may be more convenient to choose

another displacement field, for instance one like in Fig. 2(¢). In this case, equilibrium
requires

EP = s cbys. (a22)
The bending moment M* is constant between sections D and E, and equal to
1 2M,
* T =
M3 3§Pb 3i &b. (a23)
Inequality (a10) holds if
!
b < 3t (a24)

26
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where £, is the maximum value reached by &. Equation (10) becomes, with introduction
of (a22) and (a23),

*—8M°(1 2b ) (a25)

I'=2Mo — Mby) %_ a7 37

It is evident that, for any loading program, the best approximation is obtained if the largest
possible b is chosen: i.e. if the equality sign is introduced in (a24).
The final value of A* is then given by

8Mo 284\ (% ¢\ .. 8M, 2g,
i ( 3) L L-olde= 5 3% @20

Equation (a26) is plotted as a broken line in Fig. 3(b). It can thus be noted that, with the
optimum choice of b, the mode approximation in Fig. 2(e) is more reliable than that in
Fig. 2(d) when ¢, is larger than 4-55 approx.

&m
A, =A(&) = . Id¢ =

(b) Infinite beam under single concentrated force

The infinitely long beam will be studied as the limit case of the beam in Fig. 4. Also
this beam goes through three phases while ¢ increases:
Phase I (0 < & < &,). The beam moves rigidly downwards, of a quantity n, given by

EP = 2enyl. (bl)
e
P
- l & BENDING MOMENTS
¢S B i
u=u% ,-cu=-cu*® <
wemser g — it T
(0(€5€|) 4 s 7 7 Ei’m —{'MO
u=u* -cu=-c¢”
{b) PHASE 1T _f M
(§<€<&;) ca I.h..“ w"'r ‘Illl °
{c) END OF
“’ BHASE T Wﬁ"lz [t Mo
(£:&5) VY Mo

-cu™® ACTIVE HINGE
(d) PHASE I I | N
(£>&,) R V Mo
el kb b
(e F AHPAPS; oE:l[ MATION) / W ne LI _ AT Mo
(€>¢,) Rl V Mo

bk b

Fi1G. 4. Example (b).
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Assuming that the positive and negative yield moments of the beam section are equal
and taking the sagging moments as positive, the threshold load &, P corresponds to

Mp = +M,
(b2)
MA = Mc = "MO
ie to
I 8M,
2M() = élP:ﬁ{’ LE. (’:1 = '—P"l"“. (b3)

Phase II (&, < ¢ € &,). The beam deforms with three plastic hinges, as indicated in
Fig. 4(b). As in the previous example, the end of this phase is reached when #, vanishes, i.e.
[Fig. 4(c)] when

I 3
2M() -+ égpg, 1.€. 52 = '2‘51. (b4)

Phase HI (& > £,). The central plastic hinge remains stationary in B, the two lateral ones
move towards the center of the beam: the displacements at a certain stage look like in
Fig. 4(d). Operating as described with reference to Fig. 2(e), one can assume the approximate
field u* in Fig. 4(e) with

b < 12M,
CmP

Taking the equality sign in (b5), and applying formulae already used, it is easy to
derive the final values of %, A*, W* and p for any prescribed value of &,

(b5)

(EnP)
LT, =
Nm N3 (ém) 12¢ MO (b6)
(&nP)?
= A* =
An = A" T2cMy (b7)
(&nP)?
W, = W*i) =
n= WD =3 (b8)
A,
pn == 05, (b9)
It is of interest to note that p,, is independent of &,
Infinite beam. Equations {(b3) and (b4) show that
limé =limé& =0 (b10)

I=w o

Therefore, Phases I and II disappear completely for the infinitely long rigid—plastic beam:
for any non-zero load three plastic hinges are active, one directly under the force &P,
and two traveling continuously towards the loaded section. A mode approximation
should be applied from the beginning of the loading: the one described with reference
to Fig. 4(e) is perfectly appropriate, and the relevant equations (b5-9) fully valid.
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There is no limit to the maximum force £,P that the beam is able to carry under the
present assumptions. For any ¢£,,, the best approximation is obtained with b as given
by (b5) with the equality sign. Once b has been chosen, #% increases linearly with the load
(Fig. 5); the final value of %, »%, is as given by equation (b6).

FiG. 5. Example (b) (/ = c0): Approximate central displacements.

(c) Infinite plate under single load
Similar to example (b), the infinite plate will be studied as the limit case of the circular
plate in Fig. 6.

b MV ﬁ@

F1G. 6. Example (c): Diagram of plate.
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The external load £P is applied as a uniform pressure over a small circle of radius a « R,
concentric with the plate; the square yield criterion in Fig. 7 is assumed to hold for the
plate. The positive moments and shear forces acting on plate element are defined in Fig. §;
the supporting reaction is equal to — cu per unit surface, where p is the downward displace-
ment and c is constant.

A Mg
8 A
Mo
} »
Mo M
(SR DU
BMol Mo

FiG. 7. Yield locus of plate.

M
8 v

FI1G. 8. Positive (generalized) stresses.

In the development of the example, we shall be concerned only with stress states such
that the shear force is zero along a circumference of radius ry, and the circumferential
bending moment M, is constant for r < r;. Therefore, the relevant equations of equilibrium
can be directly written with reference to the elementary “slice” of plate in Fig. 9, and are

EP = 27ch ur dr (c1)
0
EP(ry — a) ~ 2nry(My — M,1) = 0 (c2)
where
f ur? dr
(]
e =—wm (c3)
J. ur dr
0
and
Mn = Mrlr=r1- (C4)

The plate goes through three phases of behavior similar to those in Fig. 4.
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F1G6. 9. Elementary “slice” of plate.

Phase I (0 £ ¢ < &,). The plate moves rigidly downwards; u is constant and equal to
1, say, and r, = R [Fig. 10(a)]. The equations of equilibrium (c1) and (c2) become

EP = nR%cn, (c5)
2¢P(R — a) — 2nR(My — M,;) = 0. (c6)
The limit of Phase I is reached when
My=M|l -0 = +M,

(€7
Mr‘r:R = Mrl = —:UMO
Introducing (c7) into (c6), the threshold load factor &, is obtained
My R
= 3xn(1 — .
&= 3nll 4 W) (c8)
By choosing the reference value P as follows
P = 3n(l + )M, (c9)
equation (c8) becomes
R
& = R—a’ (c10)
Thus, at end of Phase I
p 1 1
m 31+ p=> (c11)
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|
(a) PHASE I : Nl
(0<€<&) § ~ | - P I’"
|
(b) PHASE I 1 "
(§,<€s&,) /W f;z
!
© B 7
|

I-—b———+<—b——|

(d) PHASE IO 77 "
(€>¢,) N M3
(APPROXIMATION)

|

F1G. 10. Example (c): Displacements.

Phase 11 (£, < £ < &,). When equations (c7) hold, the center of the plate is in plastic
regime A (Fig. 7), the circumference r = R in regime B, and the rest in regime AB. The
displacement field compatible with this stress distribution is a reversed cone, with radius R
[Fig. 10(b)]. The end of this phase is reached when the displacement #, at r = R vanishes.
In this condition [Fig. 10(c)], equations (c3) and (c2) become respectively

R
_m )
f(l Rr)r dr R

O =3 (c12)
1~ 2rlrdr
=%
R 2
ézP(E — §a) = 2n(1 + wW)RM, (c13)
and with introduction of (c9)
R

2= m . (c14)

It is to be noted that for u = 1 this value coincides with that given by equation (23) in
Ref. [2], and there defined as the collapse load.
From equation (c1), the displacement 7, at end of Phase 11 is easily obtained.

=V RGR —a) o RR- %) e
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Phase 111 (£ > ¢&,). The hinge circle which was located at r = R moves inward and the
shape of the deformed plate becomes similar to Fig. 4(d). An approximate solution u*
can be assumed, in the shape of a reversed cone of radius r; = b < R [Fig. 10(d)].

A distribution of moments in equilibrium with the loads can be assumed as follows
[cf. equations {c12-13})]

M§ = MH,—o = My

(c16)
MY, o= M} = — 2%(% - %a) + M.
These moments satisfy the yield condition if
—uMy S MY, ., < M, {c17)

for any value of £ (0 < ¢ < &,). By the same arguments developed with reference to Fig. 4(e),
it is then easy to show that the most reliable approximation is obtained with the radius b
given by the condition

ELPIb 2
* = e T e e § — —
MH, = uM, shla T3¢ + Mo (c18)
that is, after introduction of (c9) and some algebra,
a
= . 1
b _3_ 1 (c19)
4 lm

It is of interest to note (i} that b (c19) decreases from R to 4a/3 as &, increases from &, to
infinity; (ii) that if a = 0 (i.e. if the plate were loaded by a truly concentrated force) no
statically admissible bending moment diagram could be found, for ¢ > £,, with the dis-
placement pattern of Fig. 10(d).

Once b has been fixed, the displacements u* increase linearly with &, according to the
equilibrium equation (c1), where r; = b. In particular, the center displacement 3 [Fig. 10(d)]
is

P M
m=3—s8=9+ m;b%s. (c20)

nch?

Introducing & = ¢, and b (c19), the final displacement 7} is obtained

1 2

Equations {c16) and (c20) allow the derivation of I’

I'=2n(uMo + M) 7% = b2 -

hp BUF HM,)? ( | - g) ©22)
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whence the values of A*, W*, p at the end of the loading

En {3 1)2
— + - 2 5m - "
An = AT(E,) = n[3(1 + WM,] - ( y ém) (c23)
9 & 3 1)\
* = * D 2 —m T —
Wi = WHEn) = gnl3(1 + WMo ( i ém) (c24)
A, 4
Pm = W,",‘, = 9_5,,, (c25)
Infinite Plate (R = o0). As it can be immediately derived from (c14)
limé =1; limé& =3% (c26)
R R—o o

while (c11) and {c15) yield zero displacements. Therefore, the stress distribution in the
infinitely large plate goes through Phases I and Il as described, but without any displace-
ment within the relevant approximations.

The description of Phase III and of u* in Fig. 10(d) is perfectly valid (for & > &, = %)
for the infinite plate. The center displacement n% and A,,, p, are therefore as given by
equations (c20), (c21) and (c23), (c25) respectively, which are plotted in Fig. 11.

The approximation can be considered satisfactory for any value of &,,.
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Fic. 11. Example (¢} (R = o0): Approximate central displacements and measure of approximation.
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6. CONCLUSIONS

In this paper the behavior of rigid—perfectly plastic structures on elastic support has
been examined. Some examples have been presented, that can be thought of as representing
beams and plates under heavy loads, floating on soft elastic (Winkler) soil or on heavy
liquid. The mathematical model of linear dependence between support reaction and
displacement, has made it necessary to assume the possibility of reversals in the sign of
the reaction, i.e. of tractions between structure and support. Physically, this situation
arises if the dead weight of the structure can be assimilated to a uniformly distributed
load, which does not cause stresses in the structure but gives a permanent constant com-
pressive reaction of sufficient magnitude to maintain contact throughout the loading.

It has been shown that, under quasi-statically increasing loads, plastic hinges are
formed in the structure, and then travel with further increase of the loads, generally towards
the applied forces. Note that on the contrary in impulsive load problems the hinges tend
to travel away from the points of application of the impulse: however, the hinges may
travel in the opposite direction if membrane forces are taken into account (cf. [14] and
[15]). The qualitative analogy between membrane forces and continuous elastic reactions
is evident: both tend to increase the strength of the structure with the displacements.
The analogy in the plastic hinge behavior is therefore quite logical.

It has been shown that the displacements can be approximated by a mode, ie. by a
one-degree-of-freedom rigid—plastic mechanism; a rational choice of such mechanism
allows a measure of (or at least an upper bound on) the approximation involved. Three
examples have been presented, in all of which the approximation appears quite satis-
factory.

This simplified approach should allow further treatments of problems of the sort
considered here, which are of considerable practical interest, but have so far been rather
neglected in the plastic theory of structures.

The analogy with membrane effects might also suggest a possible parallel development
in this direction.
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AOGCTpaKT—BBIBOOUTCH pauuOHa/IbHbIA NPOLIECC € LENbIO NONy4eHus MPUbIMKeHUit Noneil nepemMelueHUi
JJI CHCTEM, YKa3aHHBIX B 3arJlaBUM, HAarPYXEHHbIX CTATHYECKHM BBILLE TOYKM, NMPH KOTOpOH HavMHAETCA
nacTHyeckoe TedeHue. HexoTophle npuMepsl, Kacarouiyecs: 6alok M MJIACTHOKH Ha OCHOBaHMU BuHknepa
‘WIIL Ha TAXKENON XUAKOCTH®, WITIOCTPHPYIOT MPOLECC pacyeTa.



